Headquarters U.S. Air Force

Integrity - Service - Excellence

Access to Space Needs, Options, Issues

Rich McKinney SAF/AQS 27 February 2002

Today's Spacelift Systems

Atlas IIAS

Call-up: 2 - 3 Months

Delta II

2 Months

Titan IV

6 - 9 Months

Titan II

>2 Months

Cost: Approx. \$10,000 per pound to LEO

Access to Space

- What do we want?
- How best to achieve?

- What is Assured Access?
 - Defined as Ability to launch when you need to
 - Drives either separate systems or redundancy
 - Cost
 - Systems approach across payload/booster
 - Schedule
 - Performance

System Engineering is the Key

"Stand Down" Space Launch vs Aircraft

- Different reactions to catastrophic failure
- SOP for Launch
 - Any launch failure grounds launch fleet until the investigation is completed or vehicle classes/components are exonerated
- SOP for Aircraft
 - Typical commercial aircraft does not ground fleet
 - Unexpected findings during routine maintenance can ground fleet
 - C-141 Wing Spar

Access to Space Things to Consider

Responsiveness

- Not just booster...
 - ... but satellite too
- Launch System Cost Effectiveness
 - SMV-like system for weapons delivery if it cost \$20M per launch
 - SMV-like system for satellite replacement/repair for \$20M
- Responsive/cost effective launch opens options for satellite design
 - Reduced need for satellite redundancy
 - Reduced fuel loads
 - Reduced hardening

Access to Space Closing Thoughts

"Challenge is to define assured access; then use a systems approach to achieve it."